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The bane of Lagrangian hydrodynamics calculations is the premature breakdown
of grid topology that results in severe degradation of accuracy and run termination
often long before the assumption of a Lagrangian zonal mass has ceased to be valid.
At short spatial grid scales this is usually referred to by the terms “hourglass” mode
or “keystone” motion associated, in particular, with underconstrained grids such as
quadrilaterals and hexahedrons in two and three dimensions, respectively. At longer
spatial lengths relative to the grid spacing there is what is referred to ubiquitously as
“spurious vorticity,” or the long-thin zone problem. In both cases the result is anoma-
lous grid distortion and tangling that has nothing to do with the actual solution, as
would be the case for turbulent flow. In this work we show how such motions can be
eliminated by the proper use of subzonal Lagrangian masses, and associated densities
and pressures. These subzonal pressures give rise to forces that resist these spurious
motions. The pressure is no longer a constant in a zone; it now accurately reflects the
density gradients that can occur within a zone due to its differential distortion. Sub-
zonal Lagrangian masses can be choosen in more than one manner to obtain subzonal
density and pressure variation. However, these masses arise in a natural way from the
intersection of the Lagrangian contours, through which no mass flows, that are asso-
ciated with both the Lagrangian zonal and nodal masses in a staggered spatial grid
hydrodynamics formulation. This is an extension of the usual Lagrangian assumption
that is often applied to only the zonal mass. We show that with a proper discretization
of the subzonal forces resulting from subzonal pressures, hourglass motion and spuri-
ous vorticity can be eliminated for a very large range of problems.c© 1998 Academic Press
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1. INTRODUCTION AND STATEMENT OF PROBLEM

Lagrangian hydrodynamics algorithms have been in wide use for perhaps the longest
time of any numerical methods employed for the solution of complex problems of fluid
flow [1]. The major assumption of all of these algorithms is that one can define a mass
element inside a zone such that, although the zone changes its shape as its vertices move in
time, no mass crosses its boundaries. Thus the mass element is “tracked” in time. Newton’s
laws of motion are most naturally written in Lagrangian form when applied to point masses
or rigid bodies. The Lagrangian zone mass concept can be viewed as an extension of this
notion when considered with respect to a staggered grid in space where intensive variables
such as density, pressure, and specific internal energy are defined in a zone, and coordinate
position and velocity are located at the points or vertices, usually connected by straight lines,
that define the circumscribed zones. It is these kinds of schemes that we will be concerned
with here, although conceptually simpler Lagrangian algorithms where all variables are
point-centered have also been widely investigated. In this paper we will extend the idea
of a Lagrangian zone mass to remove the numerical difficulties that we refer to loosely as
“anomalous grid distortion” that have plagued these methods since their inception.

The Lagrangian assumption of a constant zonal mass is valid for problems that might best
be described as compressible, deterministic flow where mixing instabilities and turbulence
are not fully developed. These methods are very useful when a high resolution of interfaces
and other sharp discontinuities is desired. For strictly incompressible flow the assumption of
a Lagrangian zonal mass breaks down rapidly. However, both Eulerian and ALE (arbitrary
Lagrangian–Eulerian) codes developed specifically to simulate these kinds of problems of-
ten employ a splitting method whereby the “physics” is computed by a separate Lagrangian
step. Then the kinematical questions of grid point location and the fluxing of variables to
new zones and points is dealt with separately. Since we are concerned with the Lagrangian
step of this procedure, the results given here are germane to these algorithms.

The anomalous grid distortion that we are concerned with can be placed into two broad
categories. The first of these contains the hourglass modes that appear as a global mesh
distortion at the shortest spatial grid scale. They were first noted in the work by Maenchen
and Sack [2]. These motions result because a quadrilateral or hexahedral grid in two or three
dimensions, respectively, is underconstrained with respect to the total number of degrees
of freedom of the grid [3, 4]. The second type of anomalous grid distortion occurs at larger
spatial scale with respect to the grid spacing. This is referred to as spurious vorticity by
Dukowicz and Meltz [5], and as the long-thin zone problem by Browne and Wallick [6].
Although often present in calculations, these difficulties are really only precisely definable
with respect to known one-dimensional solutions using grids that are skewed in some
manner with respect to an ignorable coordinate in two or more dimensions. Here the solution
gradients are misaligned with the coordinate grid. This can then give rise to vorticity that is
completely absent from the known solution. The basic problem of anomalous grid distortion
can be best illustrated in terms of the hourglass difficulty that is explained next.

Consider the six patterns of motion illustrated in Fig. 1 that are depicted in terms of a
single quadrilateral zone where the arrows indicate the velocity vector at the grid points. It
is possible to repeat any of these six patterns globally across the entire grid. They define
the six global physical motions of the grid in two dimensions: two each of translation,
extension (contraction), and shear. (Note that a pure rotation can be obtained by subtracting
two patterns of shear in orthogonal directions.) A single quadrilateral has eight degrees of
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FIG. 1. Global physical modes of a quadrilateral grid.

freedom corresponding to the two independent directions of each of its four defining points.
However, only the six global patterns shown in Fig. 1 are physical; an additional two patterns
are the unphysical hourglass motions in each independent direction that are also global across
the grid. For this reason quadrilateral grids are referred to as “underconstrained” [3, 4].

A pure hourglass motion in two dimensions consists of a checkerboard pattern with a
velocity field in a given direction that alternates in sign at every grid point, as shown in Fig. 2.

FIG. 2. Hourglass pattern of zones about pointa; dashed lines indicate median mesh.
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There is one such pattern in each direction for a two-dimensional quadrilateral grid. In three
dimensions there are more such patterns associated with hexahedral grids [4]. In Fig. 2 the
zones are constructed from dynamical grid points shown as solid dots that are connected
by solid lines with associated arrows indicating the direction of the velocity field, which
alternates sign from point to point. Shown as dashed lines is the so-called median mesh
that connects midpoints of sides to zone centers. These points are defined by coordinates
and velocities that are simple averages (one-half or one-quarter) of those of the points that
define the zone.

Let us next consider how the dynamical equations respond to the eight global patterns of
motion of a staggered spatial grid composed of quadrilateral zones. To obtain a dynamical
response to some motion the equations for force and internal energy must exhibit a reaction
to the motion. In Lagrangian form the equations for acceleration from a force due to a
pressurep, and for the evolution of the specific internal energye, are given as

ρ
dv
dt

= −∇p, (1)

ρ
de

dt
= −p∇ · v, (2)

where the pressure is obtained from an equation of state,p = p(e, ρ). If the volume of
a zone does not change, its density is constant, and also, the specific internal energy does
not change since in this case∇ · v = 0. This latter result follows from the equation for the
continuity of mass written in Lagrangian form: forρ = Mz/Vz, whereMz is the constant
mass of a zone with volumeVz, this is

∇ · v = 1

Vz

dVz

dt
. (3)

Of the eight global motions that have been enumerated it is thus seen that only the ones cor-
responding to extension (contraction) elicit a direct response from the dynamical equations
independently of the boundary conditions; the others leave the volume of the quadrilateral
zone unchanged. However, both the shear and translation patterns are physical and cause
no difficulties. The difficulty is with the unphysical hourglass patterns. They are generally
found to grow with time at a rate that is not easy to predict.

A possible solution to this problem that has long been recognized is to allow for sub-
zonal volumes, Lagrangian masses, and thus, subzonal densities and pressures that produce
subzonal forces, since the root of the difficulty is that the zone volume does not change
in response to hourglass motion. Focus on pointa as shown in Fig. 2. If we consider the
four subvolumes shown as hatched regions that all contain pointa as a vertex, then these
subvolumes do change as it moves, as can be seen from this figure. If we consider the masses
inside these subzonal volumes to be constant, Lagrangian objects in addition to the total
mass of a zone, then from these changing subvolumes separate densities, and thus pressures,
can be computed. If we measure asδp the difference of the pressure in these subzones and
the unchanged mean zone pressure, then we obtain qualitative values ofδp about pointa as
shown in Fig. 2. These pressures produce forces that obviously oppose its motion and also
that of the hourglass pattern everywhere across the grid. At the same time it is important to
note that they provide no resistance to the physical patterns of either translation or shear. For
extension (contraction) both the zone and subzone volumes change. In this case the values
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of δp that are obtained are the same as those that are found from subtracting the pressures
that result from refining the grid by a factor of two in each direction from the zone pressure
of the unrefined grid. Thus, these subzonal pressures do not oppose this physical motion.

The major aim of this paper is to develop the consequences of the inclusion of subzonal
forces into otherwise standard Lagrangian algorithms. To this end the following issues must
be considered: the choice of and justification for subzonal Lagrangian masses, the proper
dynamical treatment of the subzonal forces that arise from them, their efficacy on relevant
test problems including limitations with regard to possible anomalous grid stiffening, and
also, their effectiveness in counteracting the spurious vorticity, or long-thin zone problem,
that is not as straightforwardly defined as is hourglass motion.

The organization of the rest of this paper is as follows: In the next section we briefly
review previous work on this subject. This essentially consists of two different approaches:
filters, where the unphysical motion is detected and removed kinematically; and, dynamical
approaches such as subzonal Lagrangian masses and associated pressures, which is the
procedure that we generalize, and certain forms of artificial viscosity that respond to hour-
glass motion and spurious vorticity. The framework in which we perform control volume
discretizations of the equations is briefly discussed in Section 3. Here is introduced the
concept of “compatibility” that allows us to compute the correct change of internal energy
that arises from subzonal forces. In Section 4 we define the subzonal Lagrangian masses
that we will use in this study. These are either quadrilaterals or triangles in two dimen-
sions. Section 5 gives the manner in which the force calculated from the subzonal pressures
is to be utilized to move the dynamical grid points. We treat the subzonal pressure as a
perturbation and employ a separate force calculation from that used for the mean pressure
of the zone. Here we introduce the concept of nondynamical points. These are points that
have forces associated with them but have velocities that are computed as averages of those
of the dynamical points whose evolution is determined by the momentum equation. This
force differencing is not unique since the force that is exerted on a dynamical point from an
adjacent zone becomes dependent on the path of integration taken through the zone when
the zone pressure is no longer a constant. This leads to the definition of a “merit factor”
to multiply the strength of these forces. This is not unlike the choice of coefficients in the
treatment of artificial viscosity. The important concern is to show that such coefficients,
although somewhat case dependent, have a wide enough dynamic range so that the class of
problems that can be computed using this technique are not limited to a narrow set. How this
merit factor can be easily automated is also considered. In Section 6 we discuss the problem
of the choice of grid elements in two dimensions. This question is: Under what conditions
are triangles artificially “stiff” for compressible flow problems? Quadrilaterals tend to be
artificially “floppy.” Finally, in Section 7 a range of numerical results is presented to show
the effectiveness of our treatment both with respect to previously published work and with
respect to the sensitivity of the merit factor that we have introduced into this formulation.
We close with a brief summary of our conclusions.

2. PREVIOUS WORK

Here we discuss the general types of spurious vorticity treatments that have been utilized
to attack this problem. For high spatial frequency hourglass motions, filters have been
devised that detect and separate the spurious motion from the mean physical velocity field
[3, 4]. The problem with this approach is that the patterns that are sought are global across
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the grid while the filters that have been devised to detect them are usually based on local
samplings of the velocity field. If there is a large spatial scale separation between the high-
frequency spurious, and low-frequency physical, velocity field, then to lowest order the
spurious velocity field carries no kinetic energy and the filtering approach can be very
effective. If this is not the case the filters will pollute the physical velocity field, particularly
if the underlying grid is not regular. Then total energy will not be conserved unless the
modified nodal kinetic energy is converted into internal energy of the zones. However,
since the filtering approach is usually kinematical with no forces directly computed, energy
conservation can only be achieved on an ad hoc basis.

An approach that has been employed with high speed flow problems is to utilize an
artificial viscosity that is edge-centered [7], that is, consists of a separate discrete artificial
viscosity term with respect to each edge of a zone. These separate viscosity terms also
respond to hourglass patterns and spurious vorticity; they can turn on whenever an edge
of a zone is under compression (one must set an appropriate condition for this). They thus
provide some resistance to these motions [8]. However, it is not always clear to what degree
they artificially damp the physical solution. We also employ an edge-centered viscosity
that utilizes advection-type limiters that reduce its effect in regions where strong shock
disturbances are not present [9]. The question of the use of artificial viscosity to maintain
grid integrity versus our subzonal pressure approach will be addressed in Section 7 when
we consider numerical examples.

Another approach is to subdivide a quadrilateral mesh into four triangular subzones whose
masses are taken to be Lagrangian. In the temporary triangular subzoning (TTS) treatment
[6] not only is this done, but the work due to both pressure and artificial viscosity forces
is also deposited in the triangular subzone volumes. Then a pressure is calculated for this
subzone that is used to compute the acceleration of its two adjacent nodal points. At the
end of each timestep the internal energy is averaged across the zone to give a mean value
for the start of the next timestep. This is performed without reference to any characteristic
timescale, and thus has no physical justification. In a modified form known as soft-TTS [6]
the density in the triangles is relaxed toward the zone average using a timescale determined
by the quadrilateral length scales divided by the zone sound speed. A variant of the TTS
procedure wherein the specific internal energy is always taken to be constant within a zone
has been pursued by Burton [10]. Here also, triangles are used as the subzones, and in some
cases the density is relaxed with time throughout the zone.

Work by Golovizninet al. [11] parallels the TTS approach to a degree but is somewhat
more general. They construct an arbitrary number of Lagrangian subzonal entities that can
be either triangular or quadrilateral with respect to a grid with quadrilateral zones. These
subzones are then constrained to have the same specific internal energy, but with different
densities because of their separate volumes and constant, Lagrangian masses. Although
an arbitrary number of subzones can be constructed in a given quadrilateral only a small
number are utilized in practice. The general procedure that we employ to define the auxiliary
points used in constructing any such subzones, their associated forces, and how they are
utilized in a force calculation is discussed in Section 5. That employed by Goloviznin and
co-workers can be viewed as a subset of the line of reasoning given in that section.

The procedure employed by Dukowicz and Meltz [5] is very specialized. They evolve
a separate equation for the vorticity in addition to the usual velocity field. The “correct”
velocity field must then be reconstructed on every timestep from its proper divergence and
vorticity, utilizing appropriate boundary conditions. There is related work by Burton that
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is termed “spurious excess vorticity damping” [12]. In this method a “true” vorticity is
calculated on the basis of the curl of the velocity field computed with respect to the zone
centers in a staggered grid formulation. The curl of the velocity field computed with respect
to an edge is then compared to these zone values. Based on the discrepancy of the two
quantities forces are calculated and used in the momentum equation to drive this difference
to zero. Although a “spurious” component of the velocity field is deduced as in the filter
approach, this scheme will automatically preserve momentum and energy and is much less
costly than that of Dukowicz and Meltz. The main difficulty with all of these methods is
how to decide what part of the velocity field is spurious and what part is not.

Finally, one can simply utilize triangles as grid elements in two dimensions. Although
there is no hourglass motion associated with these elements in a staggered spatial grid for-
mulation, this introduces additional difficulties. The most important of these is the artificial
stiffness of triangular elements for certain flow conditions. This is discussed in Section 6
since it impacts the choice of subzonal masses that one declares to be Lagrangian. Also, the
use of triangular zones does not address the spurious vorticity issue still present at length
scales larger than the grid spacing.

3. COMPATIBLE DISCRETIZATION

In order to establish the framework used in the rest of our development we consider in dis-
crete form the conservation of total energy, the momentum equation, and the internal energy
equation. Our purpose is to present a brief summary of what is known as the “compatible”
discretization of these equations that is valid for a staggered spatial placement of variables
[13]. In this discretization the three mentioned equations are differenced such that if the
discrete form of any two are specified the third results as an algebraic identity. Thus, once
one specifies a discrete form for conservation of total energy and the equation for internal
energy, the discrete form of the momentum equation follows automatically. In a completely
reciprocal manner the discrete form of conservation of total energy and the momentum
equation can be specified, and the discrete version of the internal energy equation results.
This procedure is equivalent to specifying in discrete form a vector differential operator
(say the divergence that is used to compute volume changes in the internal energy equation)
from which the conjugate operator (the gradient used to compute force in the momentum
equation) is then derived, or vice versa. When viewed in this way this is an example of
the method of support operators [14, 15]. If the force in discrete form is specified in some
manner that cannot necessarily be viewed as the direct discretization of the vector operators
acting on a function, which is the case for some of the results given in Section 5 and for
our particular form of artificial viscosity [9], then a compatible form of discretization is
the only one that will allow us to compute in a systematic manner the rate of work done
by these forces as needed for the complete specification of the internal energy equation.
An additional benefit of a compatible formulation is that total energy is always conserved
to roundoff error in discrete form. While the full discussion of compatibility is presented
elsewhere [13], the minimum of results needed for the rest of our work is given next.

Conservation of total energy can be written as

∑
z

Mzez +
∑

p

Mpv2
p

/
2 = Boundary Work, (4)
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whereez is the specific internal energy andMz is the mass in zonez, Mp is the mass
associated with the point or nodep, andvp is the grid point velocity. Thus the internal and
kinetic energies are defined in the zones and at the grid points, respectively. We can without
loss of generality neglect the boundary work term in Eq. (4) and take its time variation to
obtain ∑

z

Mzδez +
∑

p

Mpvp · δvp = 0. (5)

Hereδ denotes the change of a quantity in a discrete time increment. Note that in obtaining
Eq. (5) from Eq. (4) we have considered both zone and node masses to be constant.

The force equation at pointp can be written as

Mp
dvp

dt
= Fp ≡

∑
z

f p
z . (6)

In this equation we have defined a new object,f p
z , that we call the corner force. This force

acts from zonez and is applied to pointp such that if one sums all corner forces common to
this point, and that also belong to the neighboring zones that contain this point as a vertex,
then the total force acting on pointp, Fp, is obtained. The corner force is thus defined with
two indicies: one that refers to the zone in which it is constructed, and one indicating the
point onto which it acts. In our notation,f p

z = f z
p, except that we always sum this object

with respect to the lower index. The explicit functional form of the corner force is, as yet,
undefined. How this may be defined for forces arising from subzonal pressures is given in
Section 5, and is the major topic of this paper.

The rate of work done by corner forces of any functional form, and thus, the change in
internal energy due to them can be computed “compatibly” utilizing conservation of total
energy. The main point is that the rate of exchange of kinetic energy from gridpointp to
zonez due to the corner forcef p

z is simply the dot product of this force into the velocity of
gridpoint p. (This can be rigorously justified [13].) Then it follows from Eqs. (5), (6) after
performing a discrete change of summation by parts that, in general, the change in internal
energy produced by any corner force,f z

p, can be generically calculated by

δez = −
∑

p f z
p · vp1t

Mz
, (7)

whereδez is the change of the specific internal energy of a zone in a time1t . It is Eqs. (4),
(6), (7) that constitute an algebraic identity for an arbitrary form of the corner force object
f p
z .

Next, as an example, we give a realization off p
z for a pressurepz that is constant in a zone

using control volume differencing. Shown in Fig. 3 are the eight half-edge vectorsai that
have the direction of the outward normal to the sides of the quadrilateralz and magnitudes
equal to one-half of the length (area) of their respective sides. From these vectors the corner
force associated with the zonezand the pointp with respect to the mean zone pressurepz is
simply given asf p

z ≡ pz(a2 +a3). That is, this force acts from zonez and is applied to point
p due to the pressurepz. This is the basic form of the usual control volume differencing
that we utilize in the rest of this work [16, 13]. If the sum indicated in Eq. (7) is computed
analytically, then the result is found to be equivalent to−pzdVz/Mz [13], wheredVz is the
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FIG. 3. Quadrilateral zone and median mesh for defining corner massmp
z . Hatched lines denote Lagrangian

boundaries of coordinate-line (solid) and median (dashed) mesh.ai are outward normals to coordinate-line mesh.

discretized functional form of the change in volume of zonez in a timestep; and thus, this
yields the usual result.

In the remainder of this paper, in addition to the mean zone pressurepz, we consider
separate subzone pressuresps

z that arise, through the equation of state, from the difference
δρ between the subzone density and the zone density. We defineδp ≡ ps

z − pz, and are
concerned with constructing difference equations for the perturbed corner forces, denoted as
δfz

p, associated with the perturbed pressuresδp. (ez is always constant in space for any given
zonez.) In this case the change in internal energy due to these forces is always computed
compatibly by insertingδf z

p in place off z
p in Eq. (7).

4. SUBZONAL LAGRANGIAN MASSES

We next define what is meant by Lagrangian subzonal masses. Although this discussion
is given in terms of a quadrilateral grid in two dimensions, all of the arguments apply to
any type of grid in any number of dimensions.

In Fig. 3 we show a quadrilateral zone labeledz and single out one of its defining points
(vertices) and label itp. Aside from the grid points indicated by solid dots where the
velocity is stored, we define with asterisks auxiliary points connected by dashed lines; the
grid points are connected by solid lines. The coordinates of these auxiliary points are either
zone centers or side midpoints of a given zone, as previously described. We refer to the solid
lines that connect grid points as the coordinate-line mesh, while the dashed lines connecting
the auxiliary points define the median mesh. The mass inside zonez, that we denote asMz,
is considered to be a constant in time with its initial value. The boundary of this zone is
shown as a closed segment consisting of four straight lines of the coordinate-line mesh that
is hatched to indicated that through this boundary no mass is allowed to flow. Similarly,
we show about pointp a closed boundary that consists of the median mesh connected
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through the midpoints of sides and the zone centers about this point. Inside this boundary
is contained the mass denoted asMp that is associated with pointp. This boundary is also
shown as hatched indicating that no mass is allowed to flow through it. That is, in addition
to the zone mass being constant we postulate that the point massMp is also a constant in
time with its initial value. This is an extension of the usual Lagrangian assumption that
is most often only applied to the zone masses. We now explore the consequences of this
additional assumption.

The mass inside the hatched region in Fig. 3 is defined by the two side midpoints adjacent
to point p, the center of the zonez, and the pointp. This region is also defined by the
intersection of median mesh and coordinate line boundaries through the aforementioned
points. Since mass is not allowed to flow through either of these boundaries the mass inside
this volume must also be a constant in time with its initial value. This volume we define
as the quadrilateral subzone corner volume whose associated mass we label asmp

z . We call
this the corner mass associated with the zone indexz and the grid point indexp. So defined,
the corner mass is always a quadrilateral in two dimensions regardless of the shape of the
zone of which it is a part. Now we can proceed in the other direction and define the zonal
massMz as the sum of all corner masses common to a zone, and the nodal massMp as the
sum of all corner masses common to a grid point. This is given below as

Mz =
∑

p

mz
p, Mp =

∑
z

mp
z . (8)

As with our previous definition of corner forces,mz
p = mp

z , but summations always take
place with respect to the lower subscript.

Note that one could equally well have declared the corner mass as defined above to be a
constant, Lagrangian object and then the Lagrangian character of both the zonal and nodal
mass follows from their definitions as given by Eq. (8). In most algorithms where the nodal
mass is considered Lagrangian in addition to the zonal mass the consequences deduced by
the explicit intersection of Lagrangian boundaries have been ignored. The subzonal densities
arise from dividing these subzonal Lagrangian masses by their associated volumes.

In addition to considering the corner masses Lagrangian we will also treat the case where
a quadrilateral is subdivided, using the zone center point and the pairs of points of each
side, into four triangular masses that are considered to be Lagrangian. In this instance the
zone and node masses are also Lagrangian from Eq. (8), where one-half of the mass of each
of two triangular subzones contribute to each corner mass. The assumption of Lagrangian
triangular subzonal masses is interesting for historical reasons since they have been used
in the TTS context, also, because the subzonal forces associated with subtriangles are
conceptually easier to investigate, and because the use of triangles versus quadrilaterals as
grid elements is instructive to consider in this new context.

5. SUBZONAL FORCES/NONDYNAMICAL POINTS

Suppose that we integrate the fluid equations with higher order formulas such that we
are given more than one value of the pressure inside a zone. Then using some choice
of interpolant the pressure at every position inside the zone can be constructed, though
this interpolation is not unique. Next we must decide on an integration path for com-
puting the force through the zone that is due to pressure; this force is then applied to
the dynamical points of this zone. One might use the median mesh with straight lines



          

LAGRANGIAN SUBZONAL MASSES AND PRESSURES 531

connecting the side midpoints of the zone with the zone center point. However, this force
will be different if this path of integration is curved in some manner. The force is path
independent through a zone, and depends only on the path entry and exit points, only
when the pressure is constant in the zone; this follows from the simple addition of vec-
tor lengths inside the zone all multiplied by the same common value ofpz. Thus we see
that depending on the choice of interpolant, and the path of integration through the zone,
different values of the force applied to a dynamical point will be obtained. Also, since
these paths of integration are common to two adjacent points of a zone the force ap-
plied to one point will be equal in magnitude and opposite in direction to that applied to
the other point. In this way Newton’s third law is always obeyed and total momentum is
conserved.

Instead of following the procedure outlined above we find it more transparent and phys-
ically motivated to utilize a different approach. In place of first choosing an interpolant to
define the pressure throughout a zone we treat the difference in the subzonal pressure and
the mean zone pressure as piecewise constant in subzonal volumes that are either trian-
gles or quadrilaterals in two dimensions. Then the forces due to these piecewise constant
perturbed pressures can be calculated along the boundaries of these subzones. They must
all be accounted for with respect to the dynamical points. However, this can be done in
more than one way consistent with momentum conservation and as a consequence the net
force on the dynamical points from the same set of subzonal perturbed pressures can have
different values depending on what choices are made. This entire procedure can be viewed
as the equivalent of defining different interpolants and integration paths as noted above.
However, to allow more flexibility we multiply the forces that result from a given choice
by a nondimensional factor that can be used to connect the magnitudes of different dis-
cretizations that could have been made. This factor can also be allowed to vary on a zone
basis consistent with momentum conservation. This we call the “merit factor.” The force
differencings that can be obtained by considering the subzonal perturbed pressures to be
piecewise constant necessitates the introduction of the concept of nondynamical points, a
topic we next address.

By nondynamical points we mean those points that have forces associated with them due
to the presence of subzonal pressures but whose velocities are slaved as a simple average to
the dynamical points that constitute the grid. Such a situation is shown in Fig. 4a where we
show a quadrilateral zone with triangular subzones. Here the zone center point, labeled as
number 5, is nondynamical in that its position and velocity are determined as one-quarter
of the sum of the surrounding points. Our goal is to develop a procedure for treating the
forces associated with nondynamical points. The first constraint in dealing with subzonal
perturbed forces is conservation of momentum, which is now briefly considered in discrete
form.

Conservation of momentum for a pressure that is constant in a zone takes on an extremely
simple form. Conservation of momentum is the statement that the sum of all forces acting on
all dynamical points be equal to the total applied boundary force. However, pressure exerts
a force normal to all surfaces of a closed zone. From this fact it follows that conservation
of momentum is true on a single zone basis. To see this consider the sum of the pressure
forces taken by zones rather than by points. This yields

∑
z

8∑
i =1

f z
i =

∑
z

8∑
i =1

pzai =
∑

z

pz

8∑
i =1

ai = 0, (9)
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FIG. 4. (a) Quadrilateral zone: force contours for triangular subzonal forces differenced as Eqs. (11), (12).
(b) Quadrilateral zone: force contours for triangular subzonal forces differenced as Eq. (14).

for the case when the boundary force vanishes and where vectorsai are the outward surface
normals shown in Fig. 4a. Now, sincepz is arbitrary this equation can only be satisfied
on a single zone basis. That this is true follows from the fact that the zone is closed,
since the sum of the surface normals of any closed region is zero. Thus, conservation
of momentum for a constant pressure in a zone is simply the topological statement that
the zone is simply connected and closed. Since a single zone can be constructed as the
sum of all of its subzones, the sum of all of the subzonal forces associated with subzonal
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pressures, each constant in their respective subzones, must be equal to zero. We just need
to account for all of them when distributing them among the dynamical points that make
up the zone. Then their net momentum contribution is zero. This is the principal criterion
that we use in dealing with subzonal forces. However, this does not yield a unique force
differencing; the subzonal forces can be distributed among the dynamical points in many
ways that are found to give different results, as previously discussed. This gives rise to
the aforementioned “merit factor” that can be zone dependent and multiplies all subzonal
forces of a given zone. Since momentum is conserved on a single zone basis this is still
consistent with momentum conservation. This factor serves to connect the different strength
effects of the force discretizations that we now develop. These are all based loosely on the
idea that consistent with momentum conservation the subzonal forces should be distributed
to the corner forces associated with the dynamical points in some unbiased, symmetrical
manner.

We begin our discussion of how to distribute forces from nondynamical to dynamical
points using the triangular subzones depicted in Fig. 4a. This figure shows eight vectors,
ai , that are the outward half-edge normals to a quadrilateral zone. Although here each pair
of half-edge vectors are equal, this is not always the case [17] and for the discussion that
follows it is convenient to keep them separate. Inside we show four subtriangular zones
labeled by the circled numbers one to four, and formed by four half-length diagonals whose
normals are labeledDi , i = 1 · · · 4. There we draw the force “contours” associated with the
dynamical grid points labeled 1–4, as well as with the nondynamical center point 5. These
force contours are shown as solid curves for the dynamical points and as dotted curves
for the nondynamical center point. They are, of course, straight lines along theai andDi

vectors; they are shown as curves so that they can be distinctly seen. We will sometimes
refer to the interior ones, such as along the half pieces of the interior zone grid vectorsDi

in Fig. 4a, as “force lobes.” We denote these forces by the vectorsGi , i = 1 · · · 5. For the
grid point 1 and the nondynamical center point 5 these forces are given by

G1 = δp1a1 + δp4a8 + (δp4 − δp1)D1/2, (10)

G5 = 1

2
[(δp4 − δp1)D1 + (δp1 − δp2)D2 + (δp2 − δp3)D3 + (δp3 − δp4)D4], (11)

whereδpi is the perturbed subzonal pressure in the ith triangular subzone. The easiest way
to find the perturbed corner forces,δf p

z , associated with the dynamical grid points of the
quadrilateral is to add one-quarter ofG5 to each of the forcesGi that is already defined with
respect to a dynamical grid point. Thus, our first form for these forces associated with zone
z and pointp = 1 is given by

δf p=1
z,1st = G1 + 1

4
G5. (12)

The above gives a general prescription for finding the force discretization when nondynami-
cal points are present: treat all points as dynamical and construct a proper force differencing;
then distribute forces associated with the nondynamical points among the dynamical points
with the same weight factors that are used to enslave the nondynamical points to the dy-
namical grid points.

Let us consider another possibility wherein the four force lobes that compriseG5 are
simply added to their respective members along each diagonal. This gives a second form
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for the perturbed corner forces, which at pointp = 1 is

δf p=1
z,2nd = G1 + (δp4 − δp1)D1/2. (13)

In Fig. 4b we show the vectorsSi that are normals to the lines connecting the edge midpoints
to the zone center point. These vectors define the median mesh. From this figure it is apparent
thatS4 = −(D1 + a8) andS1 = a1 − D1, so that Eq. (13) can be rewritten as

δf p=1
z,2nd = −δp4S4 + δp1S1. (14)

This is the usual median mesh force differencing that works automatically for triangular
subzonal pressures, and which has been used previously [6, 10]. This is illustrated by the
force lobes drawn in Fig. 4b. The difference between the two corner force forms given by
Eq. (12) and Eq. (14) is that more averaging of forces is present with Eq. (12), and less of an
effect will be seen for the same values of subzone perturbed pressures. Although numerical
results show that this problem is not very acute for subtriangular forces, it becomes much
more severe for subquadrilateral forces. This is our next topic.

In Fig. 5a we show the same quadrilateral zone, along with half-edge vectorsai and
median mesh normal vectorsSi , that together define the subzonal quadrilaterals. These
subzones as well as their associated dynamical grid points are labeled as numbers 1· · · 4,
while the center point and the edge midpoints labeled 5· · · 9 comprise the nondynamical
points. Proceeding as before we show in Fig. 5b the force contours associated with points
1 · · · 9 as though they were all dynamical. Denoting these forces by the vectorsH i we have
for those necessary to construct the corner force at pointp = 1 the expressions

H1 = δp1(a1 + a8)/2

H6 = 1

2
[δp1a8 + δp4a7 + (δp1 − δp4)S4],

(15)
H7 = 1

2
[δp1a1 + δp2a2 + (δp2 − δp1)S1],

H5 = 1

2
[(δp1 − δp4)S4 + (δp2 − δp1)S1 + (δp3 − δp2)S2 + (δp4 − δp3)S3].

If we now distribute each of the forcesH i associated with the nondynamical points 5· · · 9
in proportion to the weights with which these points are enslaved to the dynamical points,
then our first form for the perturbed corner force at pointp = 1 becomes

δf p=1
z,1st = H1 + 1

2
(H6 + H7) + 1

4
H5. (16)

Once again this differencing is not unique.
Aside from being systematic, the type of differencing of nondynamical points as given by

Eq. (12) or Eq. (16) has some additional mathematical basis [11]. It arises from a variational
principle that results in the gradient and divergence operators being negative adjoints of each

FIG. 5. (a) Quadrilateral zone: topology for subzonal quadrilateral volumes with nondynamical points 5· · · 9.
(b) Quadrilateral zone: force contours for quadrilateral subzonal forces differenced as Eqs. (15), (16). (c) Quadri-
lateral zone: force contours for quadrilateral subzonal forces differenced as Eqs. (17)–(20).
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other. This in turn can be viewed as choosing the divergence as the “determining operator”
from which to construct the gradient [14, 15]. This topic is discussed elsewhere in detail [13].
Here we wish to note what happens if we continue to subdivide our subzone quadrilaterals,
all with separate Lagrangian masses and nondynamical defining points that are given as
simple averages of adjacent points [11]. It is easy to see from the above that what we get is
further averaging of the perturbed pressure forces, and that in general as we construct finer
and finer subzones the effect of these forces is further decreased except for special smooth,
one-dimensional motions of the dynamical points where they are not needed to counteract
spurious vorticity anyway.

A force differencing that is preferable to the one just given can be constructed as follows:
Eliminate the force contribution of the zone centerH5 by combining its force lobes with
those of the adjacent nondynamical midpoint members, just as was done in the triangular
case. In addition, combine the edge vectorai contributions that are associated with the
midpoints of the sides in favor of the dynamical grid points. This gives the force contours
shown in Fig. 5c from which we define the new force vectorsH′

i . For points 1, 6, 7 these
are given by

H′
1 = δp1(a1 + a8),

H′
6 = (δp1 − δp4)S4, (17)

H′
7 = (δp2 − δp1)S1,

and analogously for the other points in Fig. 5c, except that nowH′
5 = 0.

The force contours shown in Fig. 5c lend themselves to a simple interpretation; namely,
there are the subzonal forcesH′

1 · · · H′
4 that are computed along the coordinate-line mesh

and directly applied to their respective dynamical points, and there are the “recoil” of these
forces that are shown with respect to the median mesh as the force lobesH′

6 · · · H′
9 associated

with the side midpoints and the common center point of a zone. These two sets of forces,
individually summed, are equal in magnitude and opposite in direction. Many discretizations
of the subzonal forces can now be thought of as just different ways of redistributing the
recoil forces to the dynamical points with the forces along the coordinate-line mesh fixed
as stated. Our preferred way of doing this results in our second form of the subzonal forces
in which one-half of each recoil force lobeH′

6 · · · H′
9 is allotted to each of its adjacent

dynamical points. Then the perturbed corner force at pointp= 1 becomes

δf p=1
z,2nd = H′

1 + 1

2
(H′

6 + H′
7),

= δp1(a1 + a8) + 1

2
[(δp1 − δp4)S4 + (δp2 − δp1)S1], (18)

= δp1(a1 + a8)/2 − δp4S4/2 + δp2S1/2, (19)

= (δp1 + δp2)S1/2 − (δp1 + δp4)S4/2. (20)

This equation has been written in several equivalent forms, all of which are important. From
the forms given as Eqs. (18), (19) and the fact thatS1 − S4 = a1 + a8 (cf., Fig. 5a) it can
be seen that the direct force given by the first term of Eq. (19) is decreased over that in
Eq. (18) by a factor of one-half because the recoil force given by−δp1(S1 − S4)/2 just
cancels this amount. Thus, this force differencing has a “merit factor” of one-half relative
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to the triangular force differencing given by Eq. (14) where no recoil forces from a given
point act back upon it.

A force differencing with a merit factor of unity for subzonal quadrilaterals can easily be
constructed by specifying the corner force at pointp = 1 to be

δf p=1
z,3rd = δp1(a1 + a8) − δp2a3 − δp4a6. (21)

In this instance the recoil force from a given point is also taken up entirely by differing
adjacent points. In the above form the corner force on point 1 includes a recoil force from
the opposite half-edge vectorsa3 anda6. We prefer not to use this form because for distorted
grids it is not very symmetric, whereas for Eq. (19) we have the previously noted expression
S1 −S4 = a1 +a8, which allows us to reduce it to the form given as Eq. (20). This equation
says that the total perturbed corner force is simply the average of the adjacent perturbed
pressures applied to the median mesh, which is intuitively appealing and symmetric.

We actually code the form given as Eq. (18) after multiplying it by a factor of two.
Then in all quoted results the merit factor when referenced to this form is unity. There
is an important reason for doing this. For the case where we wish to preserve cylindri-
cal symmetry in Cartesian geometry, or spherical symmetry in cylindrical geometry for
a wide range of conditions this is the only form that will, with grid modifications, yield
this desired result. This is explained elsewhere [17] where a modification of both grid
vectorsai andSi must be performed to achieve this goal when subzonal pressure forces
are present. However, in the case where such symmetry is present only two different val-
ues of perturbed subzonal pressures, as opposed to the usual four, occur and one of the
last two terms of Eq. (18) will always vanish. After this grid modification Eq. (18) is no
longer equal to either Eq. (19) or Eq. (20). For triangular subzone pressures there is no sub-
zonal force differencing that will preserve the above noted symmetries for a wide range of
conditions.

5.1. Automation of Merit Factor

Although one can specify different values of the merit factor on input for a given run, this
factor can be easily automated based on the variation of the values of the subzonal densities
relative to the mean density of a zone. We define the zone variablex as the maximum
subzone density in a given zone minus the mean density divided by the mean density,
x ≡ sup(δρ)z/ρz. Then based on this variable the merit factor for a zonez, denoted byM f ,
is specified by

M f =
[
.5α1

(
1 − cos

(
πx

2α2

))]n

, (22)

for x ≤ 2α2, and as

M f = αn
1, (23)

for x > 2α2. In the above expressions we have found the settingsα1 = √
2, α2 = 0.1, and

n = 2 to be approximately optimum for a wide range of problems. These expressions give
a value for the merit factor that varies monotonically and with a continuous first derivative
with respect to the variablex between the range of values 0.0 toαn

1 with a point of inflection
at x = α2.
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Heuristically, we find that ifδρ/ρz ≥ 0.1 then the merit factor should be increased, while
if δρ/ρz ≤ 0.1 then it should be decreased, relative to the interpolation obtained using a
linear slope between 0.0 andαn

1 in order to achieve near optimum results on test problems.
The latter is very much the case for low-speed flow calculations. For example, we have
performed simulations of Rayleigh–Taylor instability with subzonal forces and we observe
that in order to obtain the correct linear growth rate the merit factor must be less than about
0.25. Then we can run far into the nonlinear regime without grid tangling. The results appear
qualitatively correct; detailed comparisons to Eulerian code results will be a topic of future
work. For high speed flow calculations, such as some given in Section 7, a value of the
merit factor greater than one is required to achieve results close to the optimum that can be
obtained for fixed values of this factor. With the values quoted forα1, α2, andn all of these
problems can be run with near optimum results.

Another simple but effective strategy for settingM f is to perform a sequence of runs using
coarse spatial resolution to determine the smallest constant value ofM f that is consistent
with grid integrity. Then the spatial resolution can be increased to give the desired accuracy.
We do not find the value ofM f to be very sensitive to grid resolution.

6. SUBTRIANGLES VERSUS SUBQUADRILATERALS

As we have discussed earlier, the use of quadrilateral subzones associated with corner
masses as auxiliary Lagrangian elements is a natural choice. However, it is useful to review
the difficulties and limitations of using triangles as subzone grid elements since this has
been the choice historically, mostly because difference schemes with subtriangles are con-
ceptually simpler to formulate. This is because, as seen, the force differencing can simply
be taken along the median mesh.

A limitation of triangles as grid elements is the stiffness problem for compressible flow.
There are also problems associated with the use of triangles as grid elements for incompressi-
ble flow. The latter are discussed at length in the paper by Fritts and Boris [18] where this
goes under the keywords “counting problem” or “grid locking problem.” For compressible
flow, grid “stiffness,” an artificial resistance to the true fluid motion, can be best seen by
contrasting a planar flow situation to that of a convergent flow. This is shown in Figs. 6a, 6b
where in Fig. 6a we show a planar flow interacting with a rigid wall; in Fig. 6b we show a flow
that stagnates with respect to a center of convergence. A quadrilateral grid with an underlying
triangular subzoning is shown. The question to be asked here with regard to stiffness is: Does
the collapse of two geometric grid points into a common point imply a true singularity in the
flow field? In the planar case shown in Fig. 6a the answer to this question is affirmative, since
the flow tries to collapse all four triangles of the quadrilateral and a pressure necessary to
resist this occurrence is the correct physical effect. However, in Fig. 6b, where a convergent
flow is shown, the physical effect is for the quadrilateral to become degenerate, forming a
triangle, and no physical flow singularity occurs. A triangular zoning yields the artificially
stiff triangles shown as shaded regions, which in the limit of convergence lose their interior
edge resulting in zero volume, and give rise to a totally unphysical grid singularity. This
leads to unphysically high pressures and consequent resistance to fluid flow [19].

It is for the above reason that we choose quadrilaterals over triangles as zone elements.
For subzonal grid elements, as seen, this difficulty does not diminish. In addition, subzone
quadrilaterals nicely match the quadrilateral zone structure. Thus, for a propagating front of
constant phase it is possible to achieve grid alignment, wherein the coordinate lines lie nearly
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FIG. 6. (a) Quadrilateral zones with triangular subgrid-planar flow. (b) Quadrilateral zones with triangular
subgrid-convergent flow.
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along and perpendicular to the phase front. Finally, studies by Golovizninet al. [11] utilizing
a different approach come to very similar conclusions. In this work results of a normal
mode analysis of the linearized difference equations associated with a quadrilateral grid
with subtriangular and subquadrilateral zones are given. The smaller the natural frequency
ω of a grid vertex the more movement it is allowed, and the less “rigid” is the numerical
differencing. They find that if one measures the natural frequencyω of a purely quadrilateral
grid as unity, then for such a grid with subtrianglesω = √

1.5, and for subquadrilaterals
ω = √

1.25. If one triangulates a quadrilateral grid poorly, with diagonals all drawn in one
sense of direction, a much higher valueω = √

5 is obtained indicating a much stiffer grid.
In three dimensions the competition between tetrahedra and hexahedra can be viewed

in much the same manner as above because we would like our three-dimensional results
to reduce to two-dimensional ones in the limit of an ignorable coordinate. Since tetrahedra
reduce to triangles in two dimensions, this requirement argues for the use of grid elements
more general than tetrahedra.

7. NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented to show both the effectiveness of our procedure and also
the sensitivity of the calculations to the merit factor that affects the strength of the subzonal
forces. All results are run with subzonal quadrilateral forces using the differencing given
by Eq. (18). We use an ideal gas equation of state for all problems except the bending beam
case. An edge-centered artificial viscosity is employed to capture shocks [9]. The underlying
differencing of the hydrodynamics equations is a control volume scheme, except for the
Lazarus implosion problem where we use the area-weight variant [13, 17] in cylindrical
geometry. All changes in internal energy are calculated compatibly so that total energy is
always conserved to roundoff error [13]. For the sake of brevity we sometimes give only
partial problem setups and reference where the complete specifications can be found; all of
these have been previously published elsewhere.

Our first test example is the bending beam problem of Flanagan and Belytschko [4]
in two-dimensional Cartesian (x − y) geometry. This problem readily develops a virulent
hourglass distortion. It consists of a perfectly elastic beam that we take to be 100 cm in
length and 50 cm in width that is perfectly hinged at the vertical midpoint locations of both
of its ends (25 cm from its base); the force of gravity acts downward (negativey direction).
This region is discretized with 16× 32 zones. The beam obeys a stiffened gas equation of
state [20] where the pressurep and sound speedcs are given in terms of the densityρ and
the specific internal energye by

p = a2(ρ − ρ0) + (γ − 1)ρe, (24)

c2
s = a2[γ − (γ − 1)ρ0/ρ] + γ (γ − 1)e. (25)

For this problem we setρ0 = 8.0 gm/cm3, a2 = 1. × 1011 cm2/s2, andγ = 3. The downward
force of gravity isg= 1. × 108 cm/s2. The initial density isρ0: initial velocity, specific
internal energy, and stress deviators are all zero. All boundaries are free except for the two
hinged points for whichv(t) = 0. The stress deviators associated with material strength are
updated in the usual manner by integrating their time derivatives; these are equal to the
elastic shear modulusG times the traceless symmetric strain rate tensor that is computed
in the zone centers. The stress deviators are thus zone centered, and are never subzonal in
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the sense of the pressures used in this paper. Material strength forces are computed as the
divergence of the stress deviators using the usual control volume differencing implemented
relative to the median mesh. For this case we setG = 1. × 1012 dynes/cm2.

The beam is not initially in force equilibrium and begins to execute an elastic oscillation.
In the first simulation of this problem, shown in the four parts of Fig. 7, we use no subzonal
pressure forces and no artificial viscosity. The beam is shown at the timet = 3.5 × 10−4 s
in Fig. 7a where a pure hourglass distortion of the entire grid has developed but the zones
have not yet become overlapping. (The supports are indicated by the hatched symbol at
the middle of both ends.) In Fig. 7b the beam is shown at timet = 5.5 × 10−4 s where
zone overlapping, although severe, still allows distinct zones to be visualized. However,
this problem can be run indefinitely without numerical failure and is continued until the
time t = 0.01 s. By this time the grid completely separates and appears as a black smear
that extends to−5000 cm in the negative verticaly direction. In Figs. 7c, 7d are shown
the velocity in the vertical direction as a function of time of two adjacent points numbered
(17, 17) and (17, 18) that initially lie at the top center of the horizontal boundary of the
beam. Notice that the first point (17, 17), as seen from Fig. (7c), undergoes just over seven
periods of sinusoidal motion about zero velocity; whereas the adjacent point (17, 18), whose
velocity versus time is shown in Fig. 7d, displays a linear increase in velocity in the negative
y direction with a slope of 108 cm/s2, which just matches the value of gravity employed in
the simulation. This pattern is repeated by every other point across the entire grid except
for the two hinged boundary points. What is seen is a perfect hourglass pattern that results
from near perfect cancellation of all forces except that of gravity at every other point. Thus,
half of the points free-fall under a constant gravitational field while the other half execute
sinusoidal motion that is approximately that of the correct oscillating beam solution with
material stress forces calculated from highly elongated zones whose length increases as
gt2/2.

As just computed, this problem is ill-posed in that minor changes in the initial and
boundary conditions (using an odd number of zones or hinging the two boundary points
slightly asymmetrically) will break this decoupling pattern of every other point. In this
instance a highly distorted and virtually random pattern of points results and the code will
crash much before the final time shown. If this problem is run with all points at either end
hinged with zero velocity then the hourglass pattern will still develop but will not be nearly
as virulent as that shown with just fixing single points at either end. How hourglass motion
will be constrained by altering the boundary conditions in any given situation is not a priori
obvious.

In the first three parts of Fig. 8 results are given for this problem with subzonal pressure
forces using a constant merit factor of 0.25 and with no artificial viscosity. The grid with
velocity vectors at the points is shown in Fig. 8a at the timet = 5.5× 10−4 s. No hourglass
distortion is present at this time or at any other time throughout the run. In Fig. 8b is
shown the same plot but at timet = 8.5 × 10−4 s when the grid velocity vectors have
just changed sign from negative to positive (this could be at any such time of several in

FIG. 7. (a) Bending beam problem: grid at timet = 3.5 × 10−4 s, artificial viscosity and subzonal pressure
forces off. (b) Bending beam problem: grid at timet = 5.5 × 10−4 s, artificial viscosity and subzonal pressure
forces off. (c) Bending beam problem: vertical velocity versus time for point (17, 17). (d) Bending beam problem:
vertical velocity versus time for point (17, 18).
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this run) corresponding to the maximum amount of bending of the beam in any oscillation
period. One-half of a cycle later the beam returns to its initial position and the velocity
vectors change sign from positive to negative as shown in Fig. 8c. The velocity of the point
(17, 17) in the vertical direction with respect to time is shown in Fig. 8d as the curve that
has the highest magnitude of oscillation, and is seen to be approximately undamped. All
other points of this simulation, except for the two hinged boundary points, exhibit this same
oscillatory behavior with magnitudes that vary somewhat depending on their initial location.
Note that this curve is qualitatively similar to that shown in the extreme hourglass case of
Fig. 7c: the latter has a somewhat higher oscillation frequency and a smaller amplitude. The
sensitivity of these results to the number of zones used and placing of the boundary points,
that was present in the previous case, has been completely removed by the use of subzonal
forces. The curves with smaller oscillation amplitude in Fig. 8d are a part of the next
topic.

This problem is next run with the merit factor set to zero so that subzonal pressure
forces are turned off but with the aforementioned edge-centered artificial viscosity turned
on with standard settings [9]. The grid with velocity vectors is shown in Fig. 9a at time
t = 5.5 × 10−4 s. It is seen that a very substantial resistance to the development of the
hourglass pattern has been achieved at this time. This pattern shows itself only near the two
supports. However, the velocity field is seen to be damped, over that at the same time in
Fig. 8a where no viscosity is present, both in magnitude and with respect to the direction
of these vectors; they are much more grid aligned than in Fig. 8a. The grid with velocity
vectors is shown again in Fig. 9b at the latter time oft = 9.×10−4 s just after this calculation
terminates due to excessive grid distortion near the supports. At this time the beam is about
to reverse direction of oscillation as can be seen from the velocity vectors, but the hourglass
pattern has reasserted itself. Thus, what is seen is that while an edge-centered artificial
viscosity can provide some resistance to hourglass motion it is not nearly as effective as the
subzonal pressure force method, and comes at the price of excessive dissipation. To further
clarify this latter point we return to Fig. 8d where the curve with the middle-size amplitude
is the vertical velocity of point (17, 17) versus time for this problem run with both a merit
factor of 0.25 for the subzonal pressure forces and with the artificial viscosity turned on
using standard parameters. The subzonal pressure forces eliminate all hourglass motion
without the need for artificial viscosity. While the period of oscillation does not change the
amplitude is seen to decrease with time. The curve with the smallest magnitude in Fig. 8d
shows the result for this same problem except that the limiters on the artificial viscosity have
been turned off so that this viscosity acts more strongly resulting in an enhanced damping
of the oscillation amplitude, as can be seen.

If this problem is run with a fixed merit factor of less than about 0.1 severe hourglass
distortion begins to occur; if it is run with a fixed merit factor of 1.0 the amplitude of the

FIG. 8. (a) Bending beam problem: grid with velocity vectors at timet = 5.5×10−4 s, artificial viscosity off,
subzonal pressure forces on, merit factor= 0.25. (b) Bending beam problem: grid with velocity vectors at time
t = 8.5 × 10−4 s (maximum excursion), artificial viscosity off, subzonal pressure forces on, merit factor= 0.25.
(c) Bending beam problem: grid with velocity vectors at a time of minimum excursion, artificial viscosity off,
subzonal pressure forces on, merit factor= 0.25. (d) Bending beam problem: vertical velocity versus time for point
(17, 17), subzonal pressure forces on, merit factor= 0.25. Three cases: maximum amplitude-artificial viscosity
off, middle amplitude-artificial viscosity on and limiters on, minimum amplitude-artificial viscosity on and limiters
off.
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FIG. 9. (a) Bending beam problem: grid with velocity vectors at timet = 5.5× 10−4 s, artificial viscosity on:
subzonal pressure forces off. (b) Bending beam problem: grid with velocity vectors at timet = 9.0 × 10−4 s (run
termination), artificial viscosity on: subzonal pressure forces off.
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oscillations is nearly the same as that seen in Fig. 8d for otherwise identical run parameters;
however, the frequency of the oscillations does increase by about 10%. The reason for this
appears to be due to a somewhat larger effective sound speed.

We now consider a shock refraction problem in Cartesian geometry using the same grid
setup as Dukowicz and Meltz [5]. In this problem a piston moves from the left sending
a shock wave through an initially cold material of unit density with a grid that is tapered
so that its right boundary is at an angle of 60◦ relative to the vertical. This shock then
becomes incident on a second grid that is slanted but uniformly spaced at an angle of 60◦.
Reflective boundary conditions are applied to the top and bottom of both grids. The region
composed of the second grid has an initial density of 1.5. The problem is run to a time
t = 1.3 just before the shock starts to run off the second grid. We show results at this time.
In Figs. 10a, 10b are shown the grid with velocity vectors and a contour plot of the density,
respectively, using our base scheme and without any subzonal forces. We see that some
grid tangling has occurred in the lower left hand corner next to the driving piston and lower
reflective boundary. An enlarged portion of the grid in this region is displayed in the lower
right hand corner of Fig. 10a. The density contour shows a sharp contact discontinuity at
the initial boundary of the two regions. The importance of this problem is that we have both
physical vorticity and spurious grid distortion present [5]. In Figs. 10c, 10d are shown the
same results except that subzonal pressure forces have been utilized with a constant merit
factor of 0.25. All grid tangling has disappeared; the density contours have only changed
slightly from before. The same case has been run with a merit factor of 1.0. The grid at
this time looks identical to that of Fig. 10c. In Fig. 10e we display the contour of density
for this run and note that it has changed only slightly from the previous results. The region
near the contact discontinuity, where physical vorticity is present, is virtually the same in all
cases.

Next, we show results of the Saltzman piston problem [5, 21]. In this example a piston
moves with unit velocity from the right sending a shock across a grid that is skewed with
respect to the vertical with a one-half sinwave perturbation. The initial density is unity and
internal energy is zero. The shock reflects off a fixed boundary at the left end. We run this
problem in cylindrical (r − z) geometry with reflective boundary conditions at thez-axis
and at the outer radial boundary ofr = 0.1. The reflective boundary at thez-axis is through
the center of the zone and there are no grid points atr = 0. Results for this problem are
shown at timet = 0.8 when the shock has reflected from the left boundary and is moving
back towards the driving piston. In Figs. 11a, 11b are shown the grid and a contour plot of
the density, respectively, for our standard scheme with no subzonal pressure forces. All grid
distortion is spurious since this is a purely one-dimensional problem. The correct answer
for the density is 4.0 is the singly shocked region and 10.0 in the doubly shocked region.
Significant deviations from this result can be seen. Again we show in Figs. 11c, 11d the
grid and density contours at this time but using subzonal pressure forces with a merit factor
of 1.0. Some very minor distortion remains but the answers are extremely close to the true
solution.

FIG. 10. (a) Shock refraction problem: grid with velocity vectors at timet = 1.3—zero merit factor. (b)
Shock refraction problem: density contours att = 1.3—zero merit factor. (c) Shock refraction problem: grid
with velocity vectors at timet = 1.3—merit factor= 0.25. (d) Shock refraction problem: density contours at
t = 1.3—merit factor= 0.25. (e) Shock refraction problem: density contours att = 1.3—merit factor= 1.0.
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FIG. 10—Continued
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FIG. 10—Continued

In Fig. 12 we again show results using the Saltzman piston problem but this time for very
high aspect ratio zones. Instead of the unit aspect ratio of the initial problem, we simply
extend the radial, and ignorable, direction by a factor of 104. This illustrates the long-thin
zone problem mentioned at the beginning of this paper [6] as can be seen from the massive
grid distortions shown in Fig. 12a. This figure shows the result from our standard algorithm
at time t = 0.8 without subzonal forces. That the grid distortion for this case should be
much worse than for the unit aspect ratio case is not a priori obvious since the size of the
perturbation of the initial grid across the vertical length is constant. That is, the shock wave
is more perpendicular to the vertical lines by a factor of 104 over the unit aspect ratio case.
This places the directional perturbation of the grid relative to the solution at truncation error
levels. In Fig. 12b is shown the grid for the same case but using subzonal forces with a
merit factor of 1.0. While this result is much improved and no grid tangling is present, the
grid still departs from a planar front where the reflected shock is moving back towards the
piston. The results shown in Fig. 12c has subzonal forces with a merit factor equal to 2.0.
This is nearly perfect with densities extremely close to the true values and a coherent shock
front. It is easy to construct highly curved but non-overlapping initial grids at high aspect

FIG. 11. (a) Saltzman piston problem: grid at timet = 0.8, unit aspect ratio, merit factor= 0.0. (b) Saltzman
piston problem: density contours at timet = 0.8, unit aspect ratio, merit factor= 0.0. (c) Saltzman piston problem:
grid at timet = 0.8, unit aspect ratio, merit factor= 1.0. (d) Saltzman piston problem: density contours at time
t = 0.8, unit aspect ratio, merit factor= 1.0.
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FIG. 12. (a) Saltzman piston problem: grid at timet = 0.8, aspect ratio of 104 × 1, merit factor= 0.0. (b)
Saltzman piston problem: grid at timet = 0.8, aspect ratio of 104 × 1, merit factor= 1.0. (c) Saltzman piston
problem: grid at timet = 0.8, aspect ratio of 104 × 1, merit factor= 2.0.

ratio using trigonometric functions that will cover very large fractions of the solution space.
When such problems are run the same behavior is seen: large grid distortion and tangling
without subzonal forces, and coherent, much-improved results with such forces and a merit
factor in the range from one to three. However, the Saltzman problem, owing to its straight
line initial grid, can be run at unit aspect ratio while the others cannot, and will always
result in a grid that binds. Thus, the problem we address here is not one of excessive grid
curvature, but of a grid slightly canted with respect to the physical solution. Grid distortion
increases with a constant angular perturbation across a zone as the aspect ratio of that zone
increases. The merit factor that we introduced was calibrated using this problem. That is,
we see the same effect with subzonal forces from Eq. (14) using triangles as we do from
Eq. (18) with subquadrilaterals if we multiply the subzonal forces of the latter by a factor
of two. Using subquadrilateral forces differenced with Eq. (16) gives a weaker effect by
about another factor of two or more because of the averaging done by these force contours
when applied to this problem.

With regard to the form of the artificial viscosity used in the above example, we see from
Fig. 12a that artificial viscosity alone was not effective in producing good results for this
long-thin zone problem. However, the edge-centered viscosity used here [9] is generally
better for long-thin zone problems than a zone-centered form. This is because the motions of
the edges of a zone can be roughly uncorrelated if the zone is long and thin. In this instance
a zone-centered artificial viscosity will generally respond to a shock wave impacting upon
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any portion of the zone, instead of just that of an individual edge, and can lead to unwanted
spurious motion of the zone as a whole. We conclude from these results that an artificial
viscosity should only be used to resolve shock wave disturbances and not to, in addition,
control spurious zone distortion; for the latter purpose artificial viscosity will often be found
to cause more harm than good.

Finally, the implosion problem of Lazarus [22] is run in cylindrical geometry using the
initial grid shown in Fig. 13a. In this problem a sphere of unit radius, unit density, and zero
internal energy initially, is driven by an inward radial velocity at the boundary with a time
dependence that is calculated from a self-similar solution expressed as the answer to an
ODE problem [22]. An approximate form for this expression as well as the solution for
the density at our final timet = 0.8 is given in [17]. Our initial grid consists of 51 radial
lines at equal angles on a 180◦ grid, and 101 circular lines with centers displaced so that the
innermost circle lies at a false center of convergence that is 50% removed in radius from the
center point of the outermost circle. It is this outermost circle that is driven with the velocity
boundary condition that is centered on the point (0., 0.). The false center of convergence is
allowed to move with a velocity that is an average of that of points which lie initially on the
circle next to it. This problem setup gives an extreme example of the general case where a
center of convergence is not known in advance. The results shown are performed with an
area-weight scheme [13, 17] using subzonal forces with a merit factor of 1.0.

The velocity vectors at the grid points and a contour plot of the density are given at
time t = 0.7 in Figs. 13b, 13c. At this time the shock has moved past the false center of
convergence and, from the velocity vectors, is headed for convergence at about the proper
point (0., 0.). The density contour shows a small perturbation about this false center, but
the contours are still mostly circular. The shock wave converges at a point on thez-axis
just aftert = 0.75; this point is slightly to the left of (0., 0.) showing that the false center
of convergence has slowed the shock wave down slightly. This can be clearly seen in
Figs. 13d, 13e where we show the grid and a contour plot of the density att = 0.8 after the
shock has reflected off thez-axis and is moving outward. Again, there is a small density
perturbation at the false center of convergence. If this problem is run with this grid setup and
without subzonal forces, the code will grid tangle and quit just as the shock wave intersects
the false convergence center. A density contour plot for the same problem with identical
run parameters but using an initial grid that has all circles centered at point (0., 0.) is shown
at timet = 0.8 in Fig. 13f for comparison. This result is very close to the known solution
[17] and preserves spherical symmetry to roundoff error. If the symmetric problem whose
result is given by Fig. 13f is run without subzonal pressure forces the resulting density
profile will be virtually identical to that seen in this figure. The densities differ mostly in the
fourth significant digit indicating that the subzonal pressure effects are at truncation error
levels.

The point of this last comparison is that subzonal pressure forces remain at truncation
error levels for problems that have shock discontinuities but not strong differential grid

FIG. 13. (a) Lazarus implosion problem: initial grid showing false center of convergence. (b) Lazarus implo-
sion problem: grid point velocity vectors at timet = 0.7. (c) Lazarus implosion problem: contours of density at
time t = 0.7. (d) Lazarus implosion problem: grid at timet = 0.8. (e) Lazarus implosion problem: contours of
density at timet = 0.8. (f) Lazarus implosion problem: contours of density at timet = 0.8 using an initial grid
with all circles centered at point (0., 0.).
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distortions. For these cases the differences caused by these forces are no larger than those
that are seen due to truncation error when the spatial grid is refined by a factor of two. It is
only when differential disturbances at the grid scale lengths occur that these forces become
large. This is a kind of selective correction that prevents the introduction of spatial scales
that the Lagrangian grid following the fluid motion cannot adjust to and resolve. These
kind of short spatial scales result in grid tangling whether they originate from hourglass
distortions on initially unit aspect ratio grids, as seen in the bending beam example, or from
short scale distortions perpendicular to the main fluid flow as can occur for grids that have
long-thin zones, as seen in the Saltzman piston problem run with very high aspect ratio
initial zoning. In instances when the fluid flow is such that the Lagrangian assumption of a
constant mass inside a given zone breaks down (for example, the beginning of turbulence)
then the grid still does not tangle but effectively binds, becoming very thin in one direction
with a consequent crash of the timestep resulting in run termination. This can be viewed
as a form of artificial grid stiffening, but one that results from the fundamental assumption
of a constant zonal mass being violated. The onset of this difficulty can be detected by
progressively increasing values ofδρ/ρz in time by an adjacent series of zones. This should
result in an effective automated criterion for when to either split these zones, introducing
additional dynamical points, or indicate how to move these points and flux in an effective
ALE scheme. This is a subject for future work.

What we wish to stress is that a large value of the merit factor in a given run does
not mean that subzonal forces are large in any sense compared to mean pressure forces.
Likewise, a small value of the merit factor also does not mean that subzonal forces are
small; they can be zeroth order no matter how the merit factor is reduced in the case where
the onset of turbulence is being approached. This all depends on the nature of the fluid
flow. The important result is that the unphysical, or spurious, part of the velocity field is
always counteracted. In all of these problems we have looked to see how large the subzonal
perturbed corner pressures become relative to the mean zone pressure. In most cases and
over most of the grid this ratio is small, corresponding to what is expected from spatial
truncation error. In problem regions of a calculation where the grid is trying to tear, this
value can become much higher, ultimately to the point where it is zeroth order locally in
order to prevent zone inversion. This occurs independently of the size of the merit factor,
since the zone will simply distort a little more to make up for a smaller merit factor before
grid inversion is prevented. For example, in the very high aspect ratio Saltzman piston
problem a very few zones along the shock front have values of perturbed corner pressure
that are 20% or more of the mean zone pressure.

Finally, we address the increased overhead associated with this algorithm. First, one must
compute the volumes of the subzones in order to derive the subzonal densities. Depending on
how one chooses to code the forces that result from the mean pressures the coordinate-line
mesh may not need to be computed if subzonal forces are omitted, but for other instances
where preservation of certain symmetries is important this is still needed anyhow [17]. The
maximum of the perturbed corner pressure in a zone is added to the mean zone pressure and
used to derive an effective zone sound speed from which the timestep is computed from the
usual CFL condition; however, the scale lengths used in computing this condition are still
those of the entire zone and not those of the subzone volumes [13] so that the timestep is
not really decreased much over that obtained without the subzonal pressures. The artificial
viscosity and material strength forces are unchanged. In the results presented here we
require five calls to the equation of state for each zone, since we need the pressure in each
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subquad from which we subtract the zone mean pressure to obtainδp. For most equations
of state a good approximation toδp can be simply obtained by settingδp = c2

s(δρ),
wherecs is the mean speed of sound in the zone andδρ is the difference between the
subzone and zone densities; this has been tried and works well. A bit of variation in this
quantity does not matter since, as has been discussed, there is not a strong sensitivity to
the values of the merit factor, which can be allowed to vary from one zone to another.
Thus, although this extra overhead will depend somewhat on the choices one makes in
implementation, generally it will be rather small, on the order of 10% to 20% on a pure hydro
timestep.

8. CONCLUSIONS

In this paper we have investigated the problem of anomalous grid distortion in Lagrangian
algorithms that arise both from unresolved, high spatial frequency hourglass-type motions,
and spurious grid vorticity generation that occurs at somewhat larger spatial grid scales.
The extension of the Lagrangian assumption to include both the zonal and nodal mass, as
well as subzonal masses as the intersection of zone and node Lagrangian boundaries led to
the introduction of subzonal densities and pressures. This result gave rise to nondynamical
points whose force contributions must be distributed to the dynamical points in some mo-
mentum conserving manner. It is the subzonal forces associated with these pressures that
stabilize the Lagrangian grid with respect to spurious distortions. However, the manner in
which these forces could be distributed to the dynamical points is nonunique, essentially
because the force now depends on the integration path taken through a given zone. This led
us to treat the subzonal forces as perturbations distinct from the mean pressure forces of
the zone, and to introduce a zone dependent “merit factor” that multiplies the magnitude
of these forces. In the numerical examples it was shown that although this merit factor
could often be set to unity it was sometimes efficacious to make it larger or smaller than
this value; it can also be easily automated based on the magnitude of subzonal density
variation.

The procedure developed here is extremely simple to implement into existing codes.
Although we have cast our development in the framework of compatible discretizations,
this need be done only for the subzonal force modification. In this case it is enough to first
choose a form for the perturbed corner forceδf p

z , say Eq. (18), that must be appropriately
computed and then summed about the dynamical points to obtain the total perturbed force,
δFp, that is employed in the momentum equation, Eq. (6). Finally, the work done by these
forces must be computed compatibly using the internal energy equation as given by Eq. (7).
However, this last operation can be performed separately from the rest of the internal
energy update. Thus, the entire algorithm need not be in compatible form, although this is
the differencing that we recommend.

The main result of this work is to extend Lagrangian hydrocodes to the limit where the
assumption of a Lagrangian zonal mass breaks down, rather than have them quit prema-
turely due to purely spurious numerical difficulties. The numerical results were aimed at
showing that this has been achieved with a number of examples whose solutions are either
known analytically or well documented numerically, for both high-speed and low-speed
flow problems. While a properly constructed artificial viscosity can afford some mitigation
of spurious grid distortion it was shown that the method presented here is much superior,
while being nondissipative. The intention is that this work can be combined with advection
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schemes when needed, as part of an ALE or other advective formulation, to simulate a very
wide range of fluid flow problems.
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